Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; : 106524, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38664079

RESUMO

Diatoms and dinoflagellates are two typical functional groups of phytoplankton assemblages, which play a crucial role in the structure and functioning of most marine ecosystems. To date, a novel challenge in ecology and biogeochemistry is to address the influences of environmental changes associated with climate change and human activities on the dynamics of diatoms and dinoflagellates. However, the knowledge of the key environmental factors controlling the diatom-dinoflagellate dynamics remains to be improved, particularly in the coastal ecosystems. Therefore, we conducted four cruises along the Qingdao coastline in spring, summer, autumn, and winter 2022 to explore how diatoms and dinoflagellates varied in response to regional environmental changes. The results showed that the phytoplankton communities were dominated by diatoms and dinoflagellates in terms of abundance and species diversity throughout the year in the study region. Yet, there were significant seasonal variability of diatoms and dinoflagellates across the four seasons. For example, diatom species was the most diverse during autumn, and the higher average abundance was observed in the fall and winter. In contrast, the average abundance of dinoflagellates was maximum during the summer and minimum in the autumn season. Moreover, the abundance and species ratios of diatoms/dinoflagellates (dia/dino) also showed significant seasonal variations in the region. The dia/dino abundance ratio was lowest in summer, while the dia/dino species ratio showed an increasing trend from spring to fall and a slight descending trend during winter. Based on the redundancy analysis, we revealed that diatoms and dinoflagellates responded differently to various environmental variables in different seasons, of which temperature and nutrients (especially dissolved inorganic nitrogen, DIN) had highly significant correlations with both the dia/dino abundance and species ratios. Thus, we suggested that temperature and DIN were the key factors controlling the seasonal dynamics of diatoms and dinoflagellates in the Qingdao coastal area.

2.
Sci Total Environ ; 912: 169174, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072255

RESUMO

Concerns have been raised regarding the adverse effects of nanoparticles (NPs) on marine organisms, as an increasing number of NPs inevitably enter the marine environment with the development of nanotechnology. Owing to the photocatalytic properties, TiO2 NPs' toxicity may be aggravated by enhanced UV-B resulting from stratospheric ozone depletion. However, the molecular mechanisms of phytoplankton in response to TiO2 NPs under UV-B remains poorly understood. In this study, we integrated whole transcriptome analysis with physiological data to provide understanding on the toxic and protective mechanisms of marine Chlorella pyrenoidosa in response to TiO2 NPs under UV-B. The results indicated that the changes in gene expression could be related to the growth inhibition and TiO2 NP internalization in C. pyrenoidosa, and several molecular mechanisms were identified as toxicity response to TiO2 NPs and UV-B. Differential expression of genes involved in glycerophospholipids metabolism indicated that cell membrane disruption allowed TiO2 NPs to enter the algal cell under UV-B exposure, although the up-regulation of genes involved in the general secretory dependent pathway and the ATP-binding cassette transporter family drove cellular secretion of extracellular polymeric substances, acting as a barrier that prevent TiO2 NP internalization. The absence of changes in gene expression related to the antioxidant system may be responsible for the severe oxidative stress observed in algal cells following exposure to TiO2 NPs under UV-B irradiation. Moreover, differential expression of genes involved in pathways such as photosynthesis and energy metabolism were up-regulated, including the light-harvesting, photosynthetic electron transport coupled to photophosphorylation, carbon fixation, glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, indicating that more energy and metabolites were supplied to cope with the toxicity of TiO2 NPs and UV-B. The obtained results provide valuable information on the molecular mechanisms of response of marine phytoplankton exposed to TiO2 NPs and UV-B.


Assuntos
Chlorella , Microalgas , Nanopartículas , Raios Ultravioleta , Nanopartículas/toxicidade , Fitoplâncton/metabolismo , Perfilação da Expressão Gênica , Titânio/metabolismo
3.
Mar Pollut Bull ; 197: 115765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988882

RESUMO

The relationships between phytoplankton carbon (C) biomass and diversity (i.e., C-to-H' ratio) and chlorophyll a (i.e., C-to-Chl a ratio) are good indicators of marine ecosystem functioning and stability. Here we conducted four cruises spanning 2 years in Jiaozhou Bay to explore the dynamics of C-to-H' and C-to-Chl a ratios. The results showed that the phytoplankton C biomass and diversity were dominated by diatoms, followed by dinoflagellates. The average C-to-H' ratio ranged from 84.10 to 912.17, with high values occurring in the northern region of the bay. In contrast, the average C-to-Chl a ratio ranged between 15.55 and 89.47, and high values primarily appeared in the northern or northeastern part of the bay. In addition, the redundancy analysis showed that temperature and phosphate (DIP) were significantly correlated with both ratios in most cases, indicating that temperature and DIP may be key factors affecting the dynamics of C-to-H' and C-to-Chl a ratios.


Assuntos
Clorofila , Fitoplâncton , Clorofila/análise , Clorofila A , Ecossistema , Baías , Carbono , China , Monitoramento Ambiental/métodos
4.
Mar Pollut Bull ; 197: 115706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951126

RESUMO

Trimethylamine N-oxide (TMAO) is widely present in marine animals. However, the characteristics of TMAO content in different classes of marine animals are insufficiently understood. In this study, the TMAO content in 79 marine animals (48 species, 7 classes) collected in the coastal and offshore areas of China during year 2019-2022 was analysed. The results showed that the TMAO content of the total samples varied from 0 to 139.19 mmol kg-1. The TMAO content in the classes Bivalvia, Gastropoda, Polychaeta and Holothuroidea varied from 0.06 ± 0.09 to 0.38 ± 0.63 mmol kg-1, but it varied from 30.20 ± 24.20 to 75.90 ± 38.59 mmol kg-1 in the classes Crustacea, Cephalopoda, and Osteichthyes. The TMAO content in the latter 3 classes was 2-3 orders of magnitude higher than that of the former 4 classes. It was inferred that the significant difference was related to the food sources or physiological metabolic mechanisms of different classes.


Assuntos
Peixes , Metilaminas , Animais , Metilaminas/análise , Metilaminas/metabolismo , Peixes/metabolismo , China
5.
J Environ Manage ; 348: 119192, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827075

RESUMO

Dissolved organic matter (DOM) is ubiquitous and widespread in natural water and influences the transformation and removal of antibiotics. Nevertheless, the influence of DOM molecular weight (MW) on the indirect photodegradation of antibiotics has rarely been reported. This study attempted to explore the influence of the molecular weight of DOM on the indirect photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and norfloxacin (NOR), by using UV-vis absorption and fluorescence spectroscopy. The results showed that indirect photodegradation was considered the main photodegradation pathway of FQs in DOM fractions. Triplet-state excited organic matter (3DOM*) and singlet oxygen (1O2) were the main reactive intermediates (RIs) that affected the indirect photodegradation of FQs. The indirect photodegradation rate of FQs was significantly promoted in DOM fractions, especially in the low molecular weight DOM fractions (L-MW DOM, MW < 10 kDa). The results of excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) showed that terrestrial humic-like substances had a higher humification degree and fluorophore content in L- MW DOM fractions, which could produce more 3DOM* and 1O2 to promote the indirect photodegradation of FQs. This study provided new insight into the effects of DOM at the molecular weight level on the indirect photodegradation of antibiotics in natural water.


Assuntos
Matéria Orgânica Dissolvida , Água , Fotólise , Peso Molecular , Fluoroquinolonas , Antibacterianos/análise , Substâncias Húmicas/análise , Espectrometria de Fluorescência
6.
Sci Total Environ ; 903: 166560, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633373

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the potential impacts of MPs/NPs on the quality and safety of seafood.

7.
Biosens Bioelectron ; 239: 115626, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643493

RESUMO

It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Escherichia coli , Cinética , Prata , Staphylococcus aureus , Leite
8.
Mar Pollut Bull ; 194(Pt B): 115355, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595452

RESUMO

More than 1,154 fishing ports are widely distributed in China's coastal areas. To date, however, few studies on the pollution and ecological risks of heavy metals in these fishing ports have been reported. In this study, the heavy metals of 148 sediment samples collected from 37 fishing ports along the coasts of the Yellow Sea and Bohai Sea were detected. The results showed that the average contents of Cu, Pb, Zn, and Cd were 53.58 ± 44.53, 27.90 ± 18.10, 143.52 ± 74.72 and 0.28 ± 0.15 mg/kg, respectively. Based on the geoaccumulation index (Igeo) and the potential ecological risk index (RI), we found that fishing ports were the most severely polluted by Cu, but Cd had the highest ecological risk, and most of fishing ports were in moderate potential ecological risk. The positive correlation between heavy metals and total organic carbon indicated that heavy metals in fishing ports were mainly affected by anthropogenic activities.


Assuntos
Cádmio , Metais Pesados , Caça , Efeitos Antropogênicos , Medição de Risco
9.
Sci Total Environ ; 901: 165577, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467983

RESUMO

To identify the key factors influencing the trimethylamine N-oxide (TMAO) content of teleost fishes living in shallow seas and the epipelagic zone of the deep ocean, the muscle TMAO content was measured in 152 teleost fishes (21 species) collected from the marginal seas of China and the epipelagic zone of the northwest Pacific Ocean (NWPO) during May-July 2021. The results showed that the TMAO content in all fishes varied from 4.99 to 82.97 mmol kg-1, and it varied notably among different species, e.g., the highest average content (72.71 ± 8.22 mmol kg-1 in Argyrosomus argentatus) was 1 order of magnitude higher than the lowest one (Scomber japonicus), but the ratios of the highest content to the lowest content in each species varied from 1.29 to 3.28, suggesting that the interspecific variations in TMAO content were obviously greater than the intraspecific variations. Moreover, no correlation was observed between the TMAO content of the 152 fishes and the corresponding environmental factors of seawater depth, salinity and temperature, indicating that species played a more important role than environmental factors in driving TMAO accumulation. To exclude the influence of species, intraspecies correlations between TMAO content and environmental factors were analyzed. In the marginal seas of China, only ∼8 % of the TMAO content of teleost fishes (1 species) showed a positive correlation with salinity and depth, but ∼50 % of the TMAO content (5 species) was negatively correlated with temperature. Moreover, the TMAO content of the fish increased by 4.66 ± 1.38 % compared with their corresponding intraspecific average values for every 1 °C of temperature decrease. A similar phenomenon was also found in the TMAO content of pelagic teleost fishes in the NWPO, suggesting that temperature was a key environmental factor affecting the TMAO content of teleost fishes in shallow seas and the epipelagic zone of the deep ocean.


Assuntos
Peixes , Músculo Esquelético , Animais , Oceano Pacífico , Oceanos e Mares , China
10.
Mar Pollut Bull ; 194(Pt A): 115335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506492

RESUMO

The total dimethylsulfoniopropionate (DMSPt) concentrations over the surface seawater of China's marginal seas and the northwest Pacific Ocean (NWPO) in May-July 2021 (during the recessional period of La Niña) were analysed. The results showed that the DMSPt concentrations in the marginal seas of China varied from 4.73 to 775.96 nmol L-1, with an average value of 111.42 ± 129.30 nmol L-1 (average ± standard deviation). It was 2-12 times higher than those previously measured in the same seas and in the NWPO in this study. Significant positive correlations between DMSPt, chlorophyll-a and surface seawater temperature (SST) were observed in the SYS, the ECS and the NWPO. Moreover, their abnormally high SST was related to La Niña. These results suggested that high phytoplankton abundance was caused by abnormally high SST following La Niña, which further promoted DMSPt concentration increases. However, the increase of DMSPt was also related to other factors such as nutrients.


Assuntos
El Niño Oscilação Sul , Água do Mar , Oceano Pacífico , Oceanos e Mares , Água do Mar/análise , China
11.
J Environ Manage ; 342: 118313, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301027

RESUMO

Diatoms have long been thought to dominate the marine silicon (Si) cycle, as well as play an important role in the ocean's carbon (C) export, due to density-driven particle sedimentation. Research in the past decade has shed new light on the potential importance of picocyanobacteria to C export, although the sinking mechanism is still unclear. Interestingly, the recent discovery of Si accumulation by picocyanobacteria of the genus Synechococcus has strong implications for the marine Si cycle, which may also have profound influence on the oceanic C export. Understanding the mechanisms of Synechococcus Si accumulation and its ecological effects are therefore critical for addressing wider issues such as Si and C exports by small cells via biological pump. Here, we show that recent advances in process studies indicate that the presence of Si within picocyanobacteria may be a common and universal feature. Subsequently, we generalize four biochemical forms of Si potentially present in picocyanobacterial cells, which are all different from diatomaceous opal-A, and hypothesize that these various structures of Si phases may be several stage products of Si precipitation. At the same time, several aspects of Si dynamics in Synechococcus are also discussed emphatically. In addition, we provide a first estimate of picocyanobacteria Si stock and production for the global ocean, accounting for 12% of the global Si inventory and 45% of the global annual Si production in the surface ocean, respectively. The implication is that picocyanobacteria may exert a significant influence on the marine Si cycle, which is likely to alter our understanding of the long-term control of the oceanic Si cycling by diatoms. Finally, we summarize three possible mechanisms and pathways through which picocyanobacteria-derived Si can be transported to the deep ocean. Altogether, marine picocyanobacteria, despite very small in cell size, are a non-negligible group for the export of biomineral Si to deeper waters and ocean sediments.


Assuntos
Diatomáceas , Synechococcus , Água do Mar/química , Água do Mar/microbiologia , Dióxido de Silício , Oceanos e Mares
12.
Mar Pollut Bull ; 193: 115175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348278

RESUMO

Zooplankton play key top-down and bottom-up regulatory roles in aquatic food webs, and are also ecologically indicative in marine ecosystems. However, there are relatively limited data on the effects of environmental changes on natural zooplankton communities, especially in coastal ecosystems. In the present study, we systematically evaluated the potential effects of various environmental variables, such as temperature, salinity, and nutrients, on the zooplankton communities along the coastal Yellow Sea during spring, summer, and fall. The results showed that the average abundance of zooplankton decreased in general from spring to autumn, but the biomass exhibited a different seasonal variation trend, with the highest in summer and the lowest in fall. Throughout the three seasons, copepods were the most dominant species within the zooplankton communities, followed by Pelagic larvae and Hydromedusae. However, Noctiluca miliaris accounted for a large proportion of zooplankton abundance during spring. Moreover, the correlation analysis was applied to explore the potential effects of environmental factors on the seasonal variation of zooplankton communities. The results showed that chlorophyll a (Chl a) and salinity were significantly correlated with zooplankton abundance and biomass during spring. The implication is that high phytoplankton biomass (expressed as Chl a) and salinity would benefit the growth of zooplankton in spring. During summer and fall, the effects of dissolved inorganic phosphate (DIP) on the zooplankton abundance and biomass showed a significant positive correlation, indicating that zooplankton were better able to tolerate high DIP during summer and fall. Taken together, Chl a, salinity, and DIP may be the key determinants controlling the seasonal dynamics of zooplankton communities in the coastal Yellow Sea.


Assuntos
Ecossistema , Zooplâncton , Animais , Estações do Ano , Clorofila A , Fitoplâncton , Biomassa , Fosfatos
13.
Sci Total Environ ; 888: 164231, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201832

RESUMO

Sulfamerazine (SM) is a commonly used antibiotic and have been widely used to control various bacterial infectious diseases. The structural composition of colored dissolved organic matter (CDOM) is known to be a major factor that influences the indirect photodegradation of SM, yet the influence mechanism remains unknown. In order to understand this mechanism, CDOM from different sources was fractionated using ultrafiltration and XAD resin, and characterized using UV-vis absorption and fluorescence spectroscopy. The indirect photodegradation of SM in these CDOM fractions was then investigated. Humic acid (JKHA) and Suwannee River natural organic matter (SRNOM) were used in this study. The results showed that CDOM could be divided into four components (three humic-like components and one protein-like component), and terrestrial humic-like components C1 and C2 were found to be the main components that promote SM indirect photodegradation due to their high aromaticity. The indirect photodegradation of SM was much faster in low molecular weight (MW) solutions, whose structures were dominated by greater aromaticity and terrestrial fluorophores in JKHA and higher terrestrial fluorophores in SRNOM. The HIA and HIB fractions of SRNOM contained large aromaticity and high fluorescence intensities of C1 and C2, resulting in a greater indirect photodegradation rate of SM. The HOA and HIB fractions of JKHA had abundant terrestrial humic-like components and contributed more to SM indirect photodegradation.


Assuntos
Matéria Orgânica Dissolvida , Sulfamerazina , Compostos Orgânicos/química , Fotólise , Antibacterianos , Rios/química , Espectrometria de Fluorescência , China
14.
J Hazard Mater ; 453: 131361, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043857

RESUMO

Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.70 and 7.40) and CuO NPs on the embryotoxicity of marine medaka Oryzias melastigma and the bioavailability of CuO NPs in embryos. The results showed that OA alleviated the aggregation of CuO NPs and promoted the dissolution of CuO NPs in seawater (increased by 0.010 and 0.029 mg/L under pHs 7.70 and 7.40, respectively). Synergistic effects of OA with CuO NPs on medaka embryos were observed as indicated by much higher mortality and oxidative damage. Importantly, the enhanced toxicity of CuO NPs to medaka embryos under OA conditions mainly originated from the higher bioavailability of particulate CuO (e.g., 30.28 mg/kg at pH 7.40) rather than their released Cu2+ ions (e.g. 3.04 mg/kg at pH 7.40). The weaker aggregation of NPs under OA conditions resulted in higher penetration of individual particles (or small aggregates) into embryos through the micropyle and chorionic pores, causing enhanced bioavailability of NPs. The obtained results provided underlying insights into understanding the risk of NPs to marine ecosystem under OA conditions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oryzias , Poluentes Químicos da Água , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Ecossistema , Acidificação dos Oceanos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade
15.
Ecotoxicol Environ Saf ; 255: 114791, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934547

RESUMO

This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.


Assuntos
Polímeros , Águas Residuárias , Desnitrificação , Carbono/química , Reatores Biológicos/microbiologia , Poliésteres/química , Nitratos/análise , Nitrogênio/análise , Matéria Orgânica Dissolvida
16.
J Nanobiotechnology ; 21(1): 97, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941596

RESUMO

Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.


Assuntos
Anti-Infecciosos , Nanoestruturas , Nanoestruturas/análise , Anti-Infecciosos/farmacologia
17.
Front Microbiol ; 14: 1141362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891393

RESUMO

Heterotrophic denitrification is widely studied to purify freshwater wastewater, but its application to seawater wastewater is rarely reported. In this study, two types of agricultural wastes and two types of synthetic polymers were selected as solid carbon sources in denitrification process to explore their effects on the purification capacity of low-C/N marine recirculating aquaculture wastewater (NO3 --N 30 mg/L, salinity 32‰). The surface properties of reed straw (RS), corn cob (CC), polycaprolactone (PCL) and poly3-hydroxybutyrate-hydroxypropionate (PHBV) were evaluated by Brunauer-Emmett-Teller, Scanning electron microscope and Fourier-transform infrared spectroscopy. Short-chain fatty acids, dissolved organic carbon (DOC), and chemical oxygen demand (COD) equivalents were used to analyze the carbon release capacity. Results showed that agricultural waste had higher carbon release capacity than PCL and PHBV. The cumulative DOC and COD of agricultural waste were 0.56-12.65 and 1.15-18.75 mg/g, respectively, while those for synthetic polymers were 0.07-1.473 and 0.045-1.425 mg/g, respectively. The removal efficiency of nitrate nitrogen (NO3 --N) was CC 70.80%, PCL 53.64%, RS 42.51%, and PHBV 41.35%. Microbial community analysis showed that Proteobacteria and Firmicutes were the most abundant phyla in agricultural wastes and biodegradable natural or synthetic polymers. Quantitative real-time PCR indicated the conversion from nitrate to nitrogen was achieved in all four carbon source systems, and all six genes had the highest copy number in CC. The contents of medium nitrate reductase, nitrite reductase and nitrous oxide reductase genes in agricultural wastes were higher than those in synthetic polymers. In summary, CC is an ideal carbon source for denitrification technology to purify low C/N recirculating mariculture wastewater.

18.
Sci Total Environ ; 865: 161248, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587669

RESUMO

Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood. We therefore investigated the effects of OA on the embryotoxicity of both positively and negatively charged polystyrene (PS) NPs to marine medaka (Oryzias melastigma). Positively charged PS-NH2 exhibited slighter aggregation under normal conditions and more aggregation under OA conditions than negatively charged PS-COOH. According to the integrated biomarker approach, OA reversed the toxicity of positively and negatively charged NPs towards embryos. Importantly, at environmental relevant concentrations, both types of PS-NPs could enter the embryos through chorionic pores and then transfer to the larvae. OA reversed the internalization of PS-NH2 and PS-COOH in O. melastigma. Overall, the reversed toxicity of PS-NH2 and PS-COOH associated with OA could be caused by the reversed bioavailability of NPs to O. melastigma, which was attributed to altered aggregation of the NPs in acidified seawater. This finding demonstrates the charge-dependent toxicity of NPs to marine fish and provides new insights into the potential hazard of NPs to marine environments under OA conditions that could be encountered in the near future.


Assuntos
Nanopartículas , Oryzias , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Água do Mar , Microplásticos , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade
19.
Mar Pollut Bull ; 186: 114380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459769

RESUMO

Most coastal ecosystems are faced with novel challenges associated with human activities and climate change such as ocean acidification, warming, eutrophication, and organic pollution. However, data on the independent or combined effects of ocean acidification and warming on coastal eutrophication and organic pollution at present are relatively limited. Here, we applied the generalized additive models (GAMs) to explore the dynamics of coastal eutrophication and organic pollution in response to future climate change in the Bohai Sea. The GAMs reflected the fact that acidification alone favors eutrophication and organic pollution, while warming alone inhibits these two variables. Differently, the interactions between acidification and warming in the future may further exacerbate the organic pollution but may mitigate the progress of eutrophication. These different responses of eutrophication and organic pollution to acidification and warming may be attributed to algae growth and microbial respiration, as well as some physical processes such as stratification.


Assuntos
Ecossistema , Água do Mar , Humanos , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Eutrofização , Mudança Climática
20.
Artigo em Inglês | MEDLINE | ID: mdl-36554826

RESUMO

As the concept of green development spreads worldwide, environmental protection awareness for production and life has been continuously strengthened. Antibiotic residues in aquaculture wastewaters aggravate environmental pollution and threaten human health. Therefore, the detection of residual antibiotics in wastewater is crucial. In this paper, a new, simple, and low-cost method based on the glassy carbon electrode electrochemical sensor for the detection of sulfadiazine in aquaculture wastewater was developed without using complex materials to modify the electrode surface, to detect sulfadiazine which electrochemically oxidizes directly. The electrochemical performance of the sensor was studied and optimized with differential pulse voltammetry and cyclic voltammetry in the three-electrode system. The optimal electrolyte was acetic acid-sodium acetate buffer, and the optimal pH was 4.0. Finally, based on the optimized conditions, the newly established method showed satisfactory results for detecting sulfadiazine in aquaculture wastewater. The concentration of sulfadiazine and the peak current intensity showed a linear relationship in the range of 20 to 300 µmol/L, and the limit of detection was 6.14 µmol/L, the recovery rate of standard addition was 87-95%, with satisfactory reproducibility and low interference.


Assuntos
Sulfadiazina , Águas Residuárias , Humanos , Reprodutibilidade dos Testes , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos , Antibacterianos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...